Title: | Create Grouped Palettes from Hue values |
---|---|
Description: | . |
Authors: | David Barnett [aut, cre] (YOUR-ORCID-ID) |
Maintainer: | David Barnett <[email protected]> |
License: | MIT + file LICENSE |
Version: | 0.0.0.9000 |
Built: | 2025-01-17 06:25:09 UTC |
Source: | https://github.com/david-barnett/hueR |
Makes a palette for dataframe where levels within groups defined by the
group
variable share the same hue but different shades, levels within
group based on the shade
variable.
hueGroupPal( df, group, shade, maxShades = 5, hues = hueSet(), huePalFun = huePal(), manual = c(Other = "lightgrey") )
hueGroupPal( df, group, shade, maxShades = 5, hues = hueSet(), huePalFun = huePal(), manual = c(Other = "lightgrey") )
df |
dataframe with at least two variables (treated as categories) |
group |
variable name used to assign hues |
shade |
variable name used to assign colour shades of same hue |
maxShades |
maximum allowed number of shades per hue |
hues |
hues available to use for unique levels of |
huePalFun |
function used to create single hue palette for levels of |
manual |
NULL or manual additions or replacements for returned palette
in the style of |
named character vector of colours
library(dplyr) library(ggplot2) # sort countries, within continents, by average population sortedSummary <- gapminder::gapminder %>% group_by(continent, country) %>% summarise(AvPop = mean(pop, na.rm = TRUE), .groups = "keep") %>% group_by(continent) %>% arrange(.by_group = TRUE, desc(AvPop)) # create palettes countryPal6 <- sortedSummary %>% hueGroupPal(group = "continent", shade = "country", maxShades = 6) # plot population per year gapminder::gapminder %>% group_by(year) %>% ggplot(aes( x = factor(year), y = pop, # setting as factor with levels in correct order ensures ordering of bars fill = factor(country, levels = names(countryPal6)) )) + geom_col() + guides(fill = "none") + # setting manual scale of course sets correct colours scale_fill_manual(values = countryPal6) + ggfittext::geom_fit_text( aes(ymin = 0, ymax = pop, label = country), position = "stack", colour = "white" ) + theme_classic() + coord_cartesian(expand = FALSE) # plot population per year as share of world total that year gapminder::gapminder %>% group_by(year) %>% mutate(popPerc = pop/sum(pop, na.rm = TRUE)) %>% ggplot(aes( x = factor(year), y = popPerc, # setting as factor with levels in correct order ensures ordering of bars fill = factor(country, levels = names(countryPal6)) )) + geom_col() + guides(fill = "none") + # setting manual scale of course sets correct colours scale_fill_manual(values = countryPal6) + ggfittext::geom_fit_text( aes(ymin = 0, ymax = popPerc, label = country), position = "stack", colour = "white" ) + theme_classic() + coord_cartesian(expand = FALSE) # plot with modified palette countryPal6alt <- sortedSummary %>% hueGroupPal(group = "continent", shade = "country", maxShades = 6, hues = hueSet(start = 0)) gapminder::gapminder %>% group_by(year) %>% mutate(popPerc = pop/sum(pop, na.rm = TRUE)) %>% # dplyr::filter(year > 1970) %>% ggplot(aes( x = factor(year), y = popPerc, # setting as factor with levels in correct order ensures ordering of bars fill = factor(country, levels = names(countryPal6alt)) )) + geom_col() + guides(fill = "none") + # setting manual scale of course sets correct colours scale_fill_manual(values = countryPal6alt) + ggfittext::geom_fit_text(grow = TRUE, aes(ymin = 0, ymax = popPerc, label = country), position = "stack", colour = "white" ) + theme_classic() + coord_cartesian(expand = FALSE)
library(dplyr) library(ggplot2) # sort countries, within continents, by average population sortedSummary <- gapminder::gapminder %>% group_by(continent, country) %>% summarise(AvPop = mean(pop, na.rm = TRUE), .groups = "keep") %>% group_by(continent) %>% arrange(.by_group = TRUE, desc(AvPop)) # create palettes countryPal6 <- sortedSummary %>% hueGroupPal(group = "continent", shade = "country", maxShades = 6) # plot population per year gapminder::gapminder %>% group_by(year) %>% ggplot(aes( x = factor(year), y = pop, # setting as factor with levels in correct order ensures ordering of bars fill = factor(country, levels = names(countryPal6)) )) + geom_col() + guides(fill = "none") + # setting manual scale of course sets correct colours scale_fill_manual(values = countryPal6) + ggfittext::geom_fit_text( aes(ymin = 0, ymax = pop, label = country), position = "stack", colour = "white" ) + theme_classic() + coord_cartesian(expand = FALSE) # plot population per year as share of world total that year gapminder::gapminder %>% group_by(year) %>% mutate(popPerc = pop/sum(pop, na.rm = TRUE)) %>% ggplot(aes( x = factor(year), y = popPerc, # setting as factor with levels in correct order ensures ordering of bars fill = factor(country, levels = names(countryPal6)) )) + geom_col() + guides(fill = "none") + # setting manual scale of course sets correct colours scale_fill_manual(values = countryPal6) + ggfittext::geom_fit_text( aes(ymin = 0, ymax = popPerc, label = country), position = "stack", colour = "white" ) + theme_classic() + coord_cartesian(expand = FALSE) # plot with modified palette countryPal6alt <- sortedSummary %>% hueGroupPal(group = "continent", shade = "country", maxShades = 6, hues = hueSet(start = 0)) gapminder::gapminder %>% group_by(year) %>% mutate(popPerc = pop/sum(pop, na.rm = TRUE)) %>% # dplyr::filter(year > 1970) %>% ggplot(aes( x = factor(year), y = popPerc, # setting as factor with levels in correct order ensures ordering of bars fill = factor(country, levels = names(countryPal6alt)) )) + geom_col() + guides(fill = "none") + # setting manual scale of course sets correct colours scale_fill_manual(values = countryPal6alt) + ggfittext::geom_fit_text(grow = TRUE, aes(ymin = 0, ymax = popPerc, label = country), position = "stack", colour = "white" ) + theme_classic() + coord_cartesian(expand = FALSE)
Function to create create HCL palette of n
colours based on fixed hue
.
Luminance monotonically increases, whilst chroma increases and then decreases.
If names provided: return named palette of same length as unique(names),
with n
distinct colours (if n is left null, all colours are unique)
If the hue
value is left as NULL, a function will be returned,
which can generate a palette when given a hue
values and n
and/or names
huePal( hue = NULL, names = NULL, n = NULL, minChroma = 40, maxChroma = 150, minLum = 10, maxLum = 98, power = 0.8 )
huePal( hue = NULL, names = NULL, n = NULL, minChroma = 40, maxChroma = 150, minLum = 10, maxLum = 98, power = 0.8 )
hue |
numeric hue value, or NULL to return palette function |
names |
names for palette, or NULL for unnamed palette of length |
n |
number of unique shades in palette |
minChroma |
minimum Chroma for palette |
maxChroma |
maximum Chroma for palette |
minLum |
minimum luminance for palette |
maxLum |
maximum luminance for palette |
power |
power used by |
Uses colorspace::sequential_hcl()
with a fixed hue to generate palettes.
The palette generated will be roughly centered around the midpoint of the luminance range, and at approximately the maximum chroma.
Note that edges of generated palette are cut off so min and max luminances are never returned. This is because they are, by default, too dark/light to be distinguishable across hues.
vector of colours, possibly named, or a function
pal <- huePal(hue = 120, n = 9) scales::show_col(pal, borders = NA) huePal(hue = 120, names = letters[1:9]) == huePal(hue = 120, n = 9) # more names than shades --> repeats last shade extendedPal <- huePal(hue = 120, names = letters[1:16], n = 9) scales::show_col(extendedPal, borders = NA)
pal <- huePal(hue = 120, n = 9) scales::show_col(pal, borders = NA) huePal(hue = 120, names = letters[1:9]) == huePal(hue = 120, n = 9) # more names than shades --> repeats last shade extendedPal <- huePal(hue = 120, names = letters[1:16], n = 9) scales::show_col(extendedPal, borders = NA)
Rotates around the 360 degrees of hue on the HCL colour wheel,
Starts at start
and rotates cycles
times around the wheel to obtain n
colours at equal intervals
hueSet(n = 10, start = 180, cycles = 2)
hueSet(n = 10, start = 180, cycles = 2)
n |
number of hues to return |
start |
starting hue value, in degrees from 0 to 359 |
cycles |
number of cycles rotating around the |
vector
hueSet() hueSet(cycles = 1) hueSet(start = 0, cycles = 1) hueSet(start = 0, n = 9, cycles = 3)
hueSet() hueSet(cycles = 1) hueSet(start = 0, cycles = 1) hueSet(start = 0, n = 9, cycles = 3)
Merge values of vector after first n unique values
mergeAfterN(x, n, other = "other")
mergeAfterN(x, n, other = "other")
x |
vector |
n |
number of unique values/levels to keep |
other |
name of new value/level to replace excess values with |
vector
library(dplyr) letters %>% mergeAfterN(15) LETTERS %>% mergeAfterN(10, other = "?") ## Real data example ## # works for factors too gapminder::gapminder %>% dplyr::filter(year < 1970) %>% dplyr::pull(country) %>% mergeAfterN(10) %>% head(50)
library(dplyr) letters %>% mergeAfterN(15) LETTERS %>% mergeAfterN(10, other = "?") ## Real data example ## # works for factors too gapminder::gapminder %>% dplyr::filter(year < 1970) %>% dplyr::pull(country) %>% mergeAfterN(10) %>% head(50)
Helper function
rep_last(x, length.out)
rep_last(x, length.out)
x |
vector |
length.out |
desired length of vector |
rep_last(letters[1:10], length.out = 15)
rep_last(letters[1:10], length.out = 15)